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Executive Summary

Better quantifying th
e

“ la
g

time” between changes in nutrient and sediment sources in the

Chesapeake Bay watershed and improvement in th
e

Bay’s water quality and submerged aquatic

vegetation (SAV) is critical to help resource managers to implement

th
e

most effective nutrient

and sediment reduction strategies and

f
o

r

scientists to improve monitoring and modeling.

Tributary strategy plans

f
o

r

basins within

th
e Bay watershed have been developed to implement

appropriate best management practices ( BMPs) to reduce nutrient and sediment loads to th
e

Bay.

These practices

a
re designed s
o water- quality criteria (

f
o

r

dissolved oxygen, water clarity, and

chlorophyll) can b
e met in th
e Bay b
y

2010. However, there is a large degree o
f

uncertainty

about

th
e

“

la
g

time” between implementing

th
e

nutrient and sediment practices and detecting a
n

actual improvement o
f

water quality and SAV in th
e

Bay. There

a
re several components o
f

“

la
g

time” including:

a
.

The time between planning and implementation o
f

a management practice;

b
.

The influence o
f

watershed properties o
n movement o
f

nutrients and sediment to th
e

Bay;

and

c
. The time between a load reduction to th
e Bay and

th
e

actual improvement in water

quality and SAV.

Results from

th
e

workshop suggest that “

la
g

times” associated with implementation o
f

management practices, impacts o
f

watershed properties, and response o
f

th
e Bay water quality

will make it very difficult to meet water- quality criteria in th
e Bay b
y

2010. There

a
re

substantial time periods in the planning ( 1
5 months), implementation ( 1
-

3 years), and then

attainment o
f

maximumefficiencies ( 1
-

1
0 years)

f
o
r

most BMPs identified in a
n individual

tributary strategy plan. Additionally, there

a
re

la
g

times associated with
th

e movement o
f

nutrients and sediment in th
e

watershed. These include

th
e

influence o
f

ground water that may

cause a

la
g

time from months to decades

f
o
r

improvement in nitrogen concentrations. Watershed

properties affecting

th
e

storage and transport o
f

phosphorus and sediment may cause

la
g

times o
f

years to decades in water- quality improvements. Lag times in th
e

tidal waters appear to b
e much

shorter. The findings suggest that water- quality conditions in tidal waters may improve within a

season a
s

nutrient and sediment loadings

a
re reduced to th
e

Bay.

Implications and recommendations: The information about

la
g

times can b
e used b
y resource

managers to prioritize implementation o
f

practices that provide th
e

most rapid improvement in

water quality and improve models and monitoring. The recommendations include:

( 1
)

Actions to reduce nutrients from point- source discharges b
y

utilizing excess capacity a
t

municipal treatment plants may provide

th
e

most rapid improvement in water quality in

th
e

receiving waters;

( 2
)

Practices to reduce nonpoint sources should b
e assessed to determine which practices

may provide th
e

most rapid improvement in water quality given th
e

watershed

characteristics o
f

a tributary strategy basin. This assessment can b
e used in conjunction

with

th
e

cost effectiveness o
f

a BMP to help determine priorities

f
o
r

implementation o
f

specific BMPs in individual tributary basins;

( 3
)

The CBP should support a thorough evaluation o
f

th
e

suite o
f

BMPs accepted

f
o
r

consideration b
y

th
e

jurisdictions in terms o
f

time required

f
o
r

selecting and building

th
e

3



BMP,

la
g

before

th
e BMP begins to remove sediment o
r

nutrient, and

th
e subsequent

length o
f

time expected before a detectable change in receiving water loads might b
e

observed. These results, in turn, should b
e incorporated into subsequent Phase 5

watershed model runs. This evaluation would b
e valuable to help prioritize funding

f
o

r

implementation o
f

BMPs in th
e

most critical areas o
f

benefit in th
e

watershed;

( 4
)

For a more realistic assessment o
f

predicted improvement in water- quality progress,

model runs might b
e conducted with actual

la
g

times

f
o

r

BMP planning, implementation,

and time to maximum efficiency built in fo
r

each tributary;

( 5
)

Models could also b
e

improved b
y

better simulating th
e

watershed processes that affect

nutrient and sediment delivery to th
e

Bay;

( 6
)

Interpretation o
f

monitoring data needs to better explain

th
e

factors affecting water

quality changes in th
e

Bay and it
s

watershed.

( 7
)

Assessment o
f

tidal data

fo
r

attainment o
f

water-quality criteria needs further to consider

impacts o
f

extreme and prolonged hydrologic events to provide a
n objective assessment

o
f

water quality conditions in th
e

Bay.

( 8
)

The CBP should develop a
n approach to communicate

th
e

implications o
f

th
e

la
g

time

between management actions, watershed properties, and cycles in weather conditions o
n

th
e

restoration o
f

th
e

Chesapeake Bay. This will b
e very important

fo
r

continued support

o
f

efforts to implement BMPs even though
th

e
results o

f

these actions often will

n
o
t

b
e

immediately observed.
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Workshop Objectives

The objectives o
f

the STAC Lag Time Workshop were to ( 1
)

provide the CBP with a better

understanding o
f

th
e

factors affecting

th
e

“

la
g

time” associated with improving water quality and

SAV in th
e Bay and ( 2
)

provide recommendations

f
o

r

improved monitoring and modeling o
f

these factors. B
y

holding this workshop in 2004,

th
e

information will b
e available

f
o

r

use to help

improve development o
f

monitoring and modeling approaches and implementation o
f

tributary

strategies. The workshop included sessions

fo
r

each o
f

th
e

major “

la
g

time” components:

_
_ The time between planning and implementation o
f

a management practice;

_
_ The influence o
f

watershed properties o
n movement o
f

nutrients and sediment to th
e

Bay;

and

_
_ The time between a load reduction to th
e Bay and

th
e

actual improvement in water

quality and SAV.

Session 1 Summary

Planning and Implementation o
f

Management Practices

Session Chair: Ron Korcak, USDA- Agricultural Research Service, Beltsville, Maryland

Speakers:

Cliff Randall, Virginia Tech (retired): Implementation o
f

Point Source Nutrient Controls.

Mike Bowman, VA Department o
f

Conservation and Recreation; and Gary Shenk, Chesapeake

Bay Program: Non- point sources –Tributary Strategies and

th
e Bay Watershed Model:

Accounting

f
o
r

management practices.

Mark Waggoner, Natural Resources Conservation Service: Fromplanning to Implementation

Questions to b
e addressed b
y

th
e session:

1
.

What have been

th
e

most commonly adopted practices to date and what is th
e

projected

fo
r

adoption to 2010?

2
.

What is th
e

la
g

time between planning and actual implementation? What is th
e

actual

extent o
f

implementation (% o
f

th
e

planned activities)?

3
.

Are the funding and technical assistance resources available to achieve

th
e

implementation b
y 2010 o
r

b
y 2015?

4
.

What

a
re recommendations to refine

th
e

simulation in th
e CB model that would improve

th
e

correspondence between

th
e

actual point source and non- point source practice

implementation and

th
e model accounting?
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Summary o
f

Results

Point Sources

There are over 304 significant, municipally-owned wastewater treatment plants in the

Chesapeake Bay Watershed. Currently only about 7
5 wastewater treatment plants

a
re using

nutrient reduction technologies and it is projected that this number will double b
y

2010.

O
f

importance is that most o
f

th
e

304 municipally owned wastewater treatment plants have

excess treatment capacity, o
n

th
e

order o
f

60%. This excess capacity could b
e utilized

fo
r

rapid,

low cost implementation o
f

biological nutrient removal (BNR) and/ o
r

limits o
f

treatment nutrient

removal. The perceived modification costs

a
re

th
e

primary obstacle to implementation o
f

nutrient removal technologies. However,

th
e

York River wastewater treatment plant is a
n

example where excess capacity was used to accelerate implementation o
f

nutrient removal b
y

implementing reasonably cost biological nutrient removal modifications.

The

la
g

time between planning and actual implementation o
f

point-source reductions depends if

a facility adopts a
n approach to utilize excess capacity to implement BNR o
r

if major

construction is required. Estimated times

f
o
r

undertaking most renovations

a
re 1 year if excess

capacity could b
e utilized

fo
r

rapid, low cost implementation o
f BNR a
t

a plant. I
f major

construction is required a
t

th
e

plant,

th
e

la
g

time can b
e

3
-

5 years between planning and

implementation o
f

point- source reductions.

There exists a major opportunity

f
o
r

th
e Bay Community to upgrade point source facilities and

have a significant impact o
n nutrient loads to the system. The technology

fo
r

these upgrades

exists; what appear to limit upgrades

a
re financial considerations. For instance,

th
e

capacity o
f

any wastewater treatment plant is th
e

basis

f
o
r

bank loan funding. If th
e

total load capacity o
f

a

facility decreases through

th
e

use o
f

it
s excess capacity to accelerate implementation o
f

nitrogen

removal, the loan eligibility

fo
r

the plant declines. The improved nutrient removal is not a

consideration

f
o
r

loan amount. Therefore, owners will resist utilizing excess capacity to remove

nutrients due potential reduction o
f

financial borrowing potential. However, if there is a court

order o
r

other mandate, implementation o
f

nutrient removal strategies will b
e done a
s mandated

regulations result in rapid compliance.

The recommended strategy to reduce costs and accelerate implementation o
f

point source

nutrient removal includes

th
e

following:

• Provide immediate funding

f
o
r

use o
f

Excess Capacity.

• Develop a guaranteed long- term funding strategy fo
r

owners a
s

plants reach capacity,

specifically to include enhanced load potential

f
o
r

increased nutrient removal through

low- cost use o
f

excess capacity

f
o
r

nutrient reduction.

• Economic analyses o
f

plant operations and economic assessment must permit a

reduction o
f

operating and maintenance costs with adoption o
f

the more efficient

nutrient removal technologies.

• Utilize existing excess capacities o
f

th
e

significant wastewater treatment plants

t
o
:

Reduce

th
e

costs and accelerate implementation o
f

biological nutrient

Removal and limits o
f

treatment nutrient removal a
t

th
e

significant wastewater

treatment plants in th
e Bay watershed.
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Enable point-

t
o

-

point nutrient trading.

• Inaugurate a water-savings program to further increase excess capacity.

• Supplement excess capacities with innovative treatment technologies.

• Utilize centralized sludge processing wherever feasible.

• Incorporate recycle, reuse, and recovery methodologies.

Using these strategies along with existing and proven technologies

f
o

r

nutrient removal in

combination with either a strategic (financial incentives) o
r

tactical ( regulatory requirements)

approach will have a significant impact in reducing point source nutrient inputs in th
e Bay

Watershed.

Non-point Sources

There

a
re numerous, commonly adopted management practices in th
e

Chesapeake Bay

watershed to reduce nutrient and/ o
r

sediment loads. These practices include: reduction o
f

nutrients through conservation plans and nutrient-management plans, cover crops, forest buffers,

grass buffers, animal waste management systems, erosion and sediment control structures, and

storm-water management. These practices

a
re encouraged

b
u
t

there is a la
g

time between

planning, implementation, and effectiveness o
f

a practice, o
r

suite o
f

practices, to reduce

nutrients and sediment.

The

la
g

time from planning to actual implementation o
f

management practices can b
e from days

to years and depends

o
n
:

Planning a
t

th
e

field scale (what, where, how), selection o
f

th
e

appropriate best management practice (BMP), plan preparation, and, finally, implementation.

Because every

s
it
e

is unique and requires a specific

s
e
t

o
f

BMPs to meet off- site water quality

objectives,

th
e

planning process can take between 6 months to 2 years. Once planned,

implementation o
f

some individual practices can b
e

accomplished in a very short period times

(days). However, many areas require a suite o
f

practices that results in a conservation system

that may take years to implement. Additionally,

th
e

suite o
f

practices may have a

la
g

time before

they reach their peak efficiency. For example, riparian forest buffers may take years to mature

and reach maximum efficiency due to th
e

growth rates o
f

th
e

trees.

There

a
re a number o
f

factors that can influence

th
e

implementation o
f

BMPs and, in turn,

impact

th
e

la
g

time from planning to implementation. These factors include on-site timing

f
o
r

agronomic practices, cost-share availability and criteria, other farm practice changes required,

and whether o
r

n
o
t

th
e

land is rented. It is estimated that between 20% and 60% o
f

th
e

cropland

in the Chesapeake Bay watershed is rented annually. In these situations, there may not b
e clear

incentives and responsibilities

f
o
r

land owners and renters to install and pay

f
o
r

BMPs.

The resources d
o

n
o
t

currently exist to achieve full implementation o
f

management practices b
y

2010 o
r

2015. One o
f

th
e

causes

f
o
r

th
e

delay is a lack o
f

technical staff and funding to plan,

design, construct, certify, and verify management practices. Further, there is considerable

resistance to rapid BMP implementation through a
t

least two other factors, limited dialog with

7



farmers o
n

th
e duration that a practice should b
e

in place and limited funding (subsidies,

remuneration

f
o

r

putting land into a BMP and out o
f

production) to assist

th
e

farmer in adopting

and maintaining

th
e

practice.

Assessing
th

e
effectiveness o

f

management practices is complex. The CBP works closely with

th
e

jurisdictions to document

th
e

amount o
f

practices in th
e

watershed. The simulation o
f

nitrogen, phosphorus, and sediment cycling and loading is accomplished primarilythrough use

o
f

th
e

Hydrologic Simulation Program-FORTRAN (HSPF) model that is used

fo
r

the CBP

WaterShed Model (WSM). The CBP WSM is then used to estimate reductions o
f

nutrient and

sediment based o
n information about implementation o
f

management practices. The time

between gathering and verifying

th
e

management practice data and conducting CBP watershed

model progress runs can take 6 to 1
5

months. A
s

a
n

example, implementation progress data f
o

r

2002 is reported b
y mid-July 2003. However, final approval and release is not achieved until

March 2004, a

la
g

time o
f

1
5 months.

The CBP WSM development and application poses a
n

effective means to ‘ estimate’ BMP effects

o
n

th
e

watershed although there

a
re concerns. The simulation o
f

management practice

efficiencies in th
e WSM is one concern. While research plots provide ideal efficiencies

fo
r

these

practices, actual field efficiencies

f
o
r

most o
f

th
e

practices o
n a farm

a
re

n
o
t

known and it is

expected that in practice, lower efficiencies

a
re likely extending

th
e

time

f
o
r

reaching desired

load reductions in th
e

tributary strategies. Another important area

f
o
r

review is th
e

basic 10- year

hydrology approach that is used. The model runs a 10- year hydrology before and after BMP
implementation, the latter derived from tributary strategies. Therefore, the post-BMP output

reflects maximum BMP effectiveness over

th
e

10- year period when, in fact,

th
e

strategies

a
re

‘planned’ activities and there is n
o

la
g

built into

th
e

model

f
o
r

maturation o
f

th
e BMP to it
s

maximum effectiveness. Model output, therefore, represents load reductions from full

implementation o
f

a
ll management practices. Another concern is th
e

assignment o
f

a BMP

fo
r

individual model segments. There is n
o reasonable way to account

f
o
r

th
e

geographic placement

o
f

BMPs within a model segment thereby homogenizing BMP effectiveness.

Finally, there is some concern about

th
e

actual BMP implementation ' o
n

th
e

ground' in th
e

jurisdictions. Implementation o
f

some o
f

these practices is difficult to track and therefore there

is uncertainty about th
e

amount o
f

management practices that have been implemented. For

example, in 2002, tributary strategies called

f
o
r

over 6 million acres to b
e under conservation

plans but implementation approximated

3
.6 million acres. Similardifferences were noted

f
o

r

a
ll

other management practices with

th
e

possible exception o
f

conservation tillage where tributary

strategies called

fo
r

about

2
.2 million acres and 2 million acres were actually implemented in

2002. Also, current tributary strategies fall short o
n maximum implementation, b
y

2010, o
f

a
ll

management practices. The main problem aside from insufficient funds

f
o
r

a
ll BMPs is

currently minimal field verification that planned BMPs

a
re actually implemented.
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Session 2 Summary

Influence o
f

Watershed Properties o
n Water- Quality Response

Session Chair: Scott Phillips, U
.

S
.

Geological Survey (USGS)

Speakers:

Jeff Raffensperger USGS and Gary Shenk, CBP: Simulation o
f

sources and transport o
f

nutrient

and sediment in th
e Bay watershed and ideas

f
o

r

improvement.

Bruce Lindsey, USGS: The discharge, nitrogen load, and residence time o
f

ground water in th
e

Chesapeake Bay watershed.

Allen Gellis, USGS: Source, transport, and storage o
f

sediment in th
e Bay watershed.

Don Boesch, University o
f

Maryland Center

f
o

r

Environmental Science: Findings fromSTAC's

Chesapeake Futures, Recent trends in land use and development and implications

f
o
r

nutrient

loads and response o
f

Chesapeake Bay

Questions to b
e

addressed during th
e

session:

1
.

What

a
re

th
e

major sources, amounts, and projected future changes o
f

nitrogen,

phosphorus, and sediment in th
e Bay watershed?

2
.

What

a
re

th
e

amount, associated residence times, and factors influencing nitrogen,

phosphorus, and sediment sources associated with

th
e

different transport pathways in th
e

watershed?

3
. How these processes

a
re simulated in th
e

current management models and what

a
re some

other possibilities

f
o
r

improvement?

4
.

What is th
e

ability o
f

monitoring networks to detect changes in water quality a
s sources

a
re reduced and what

a
re some o
f

th
e

current trends?

5
.

Based o
n these transport times, what

a
re

th
e

implications

f
o
r

water-quality response in

th
e

watershed?

The purpose o
f

this session was to present information about ( 1
)

th
e

sources o
f

nitrogen,

phosphorus, and sediment, ( 2
)

the residence time and factors influencing the movement o
f

these

pollutants through

th
e

watershed, ( 3
)

how

th
e

processes

a
re simulated in current management

models, ( 4
)

th
e

ability o
f

monitoring networks to detect changes in water quality a
s

th
e

sources

a
re reduced, and ( 5
)

th
e

implications

f
o
r

water quality response in th
e

watershed.

Summary o
f

Results

The major contributors o
f

nitrogen, phosphorus, and sediment vary in th
e Bay watershed. The

Chesapeake Bay Program (CBP) WaterShed Model (WSM) is one tool to provide estimates o
f

different sources o
f

nutrients to th
e

Bay. For nitrogen, about 2
0 percent is from point sources

and 8
0 percent from non-point sources. The non-point sources can b
e

further divided into about

9



3
2 percent from

th
e atmosphere and 4
8 percent from other non-point sources. O
f

these remaining

nonpoint sources, fertilizer and manure comprise

th
e

majority. For phosphorus, there

a
re similar

percentages

fo
r

point sources (22%) and non- point sources (78%). The non- point sources can b
e

divided into urban (16%), mixed open (11%), agriculture (48%), forest (2%), and a small amount

from

th
e

atmosphere (1%). The sources o
f

nitrogen and phosphorus associated with point-source

discharges will mostly likely increase over time a
s

th
e human population in th
e

watershed

increases from current levels o
f

1
5 million toward projections o
f

1
8 million b
y

2030.

The sources o
f

sediment a
re less well defined. Sources o
f

sediment to th
e

Bay include shoreline

erosion, delivery from

th
e

watershed (from disturbed agricultural and urban lands and stream

corridors), input from

th
e

ocean, and internal biogenic production (Langland and Cronin 2003).

The relative contribution from these sources differs in different areas o
f

th
e

Bay. In general, th
e

Susquehanna River is the dominant source o
f

sediment in the northern Bay, in the southern Bay,

shoreline erosion and input form

th
e

ocean

a
re

th
e

dominant sources, and in th
e

central Bay,

shoreline erosion dominates.

The residence time o
f

nitrogen from

th
e

source to th
e Bay is impacted mostly b
y

th
e

amount o
f

nitrogen in surface and ground water. O
n

average, about 5
0 percent o
f

th
e

nitrogen from

th
e

land surface will runoff into surface water and

th
e

remaining 5
0 percent will percolate into

th
e

shallow ground water (Bachman e
t

a
l. 1998). Once nitrogen is in th
e

shallow ground water,

th
e

length o
f

time is takes to b
e discharged into tributaries will depend o
n

th
e movement and age o
f

ground water. The age o
f

ground water in th
e

uppermost aquifers in th
e Bay watershed range

from modern (most nitrate rich, less than 1 year) to more than 5
0 years ( lower nitrate water),

with a median age o
f

1
0 years (Lindsey e
t

a
l. 2003). These residence times and

th
e

amount o
f

associated nitrogen will differ among streams depending o
n

th
e

sources o
f

nitrogen in a

watershed and

th
e

properties affecting runoff and movement o
f

ground water. For example, in

some areas o
f

the Delmarva Peninsula, a large amount o
f

th
e

ground water discharge to streams

is fairly young ( less than 1
0 years) and contains nitrogen due to excess manure, s
o BMPs to

remove

th
e

source o
f

manure may result in fairly rapid improvements in water quality.

However, other areas o
n

th
e

Delmarva (and in th
e

watershed) have older waters (greater than 1
0

years) that have been impacted b
y commercial fertilizers. In these areas, there will b
e longer

la
g

times between the application o
f

management practices and improvements in water quality. In
addition to th

e

source reduction, nitrogen can b
e

removed from th
e

ground water due to natural

processes such a
s

denitrification. The interchange o
f

factors (ground water age, denitrification,

type o
f

source, aquifer properties) can result in a less-than-expected reduction o
f

nutrients in

receiving waters even in areas with extensive implementation o
f

management practices.

Residence times

f
o
r

phosphorus and sediment

a
re closely related

b
u
t

n
o
t

well documented. The

amount o
f

dissolved phosphorus discharged from point sources directly into a stream will have

relatively short (days to weeks)

la
g

time from

it
s source to th
e

Bay. This is estimated to b
e a

fairly small amount (about 2
0 percent) o
f

th
e

phosphorus in th
e

watershed. Phosphorus

associated with sediment will have residence times from days to decades, because much o
f

th
e

sediment (and associated phosphorus) is stored in th
e

watershed after it has been eroded from

th
e

land surface. Estimates o
f

th
e amount o
f

storage range from 7
5 % in small basins ( 1
0 km2) to

over 9
0 % in larger basins (
> 100 km2). The movement o
f

sediment and phosphorus will then

1
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depend o
n storm events that transport sediment from upland sources through different stream

reaches and finally

th
e

Bay.

The simulation o
f

nitrogen, phosphorus, and sediment is accomplished primarilythrough use o
f

th
e CBP WSM. The model is a watershed water-quality model originally developed a
s

a

rainfall- runoff model. The Hydrologic Simulation Program- FORTRAN (HSPF) model simulates

a fairly rapid transport o
f

ground water and

th
e

associated nitrogen. The active ground water

zone in HSPF has a very short residence time (hours). Investigators

a
re trying to improve

th
e

simulation b
y

adding a
n

inactive ground water zone that will increase th
e

apparent residence

time. Current simulations result in a more constant concentration in ground water

b
u
t

there

a
re

several possibilities to consider

f
o

r

improving

th
e

simulation including: ( 1
)

using a constant 10-

year ground water residence time, ( 2
)

determining ground- water residence times from recession

o
r

hydrograph separation, and ( 3
)

considering changes due to different watershed characteristics.

Actions

a
re being taken in th
e CBP Phase 5 WSM to improve this simulation. Simulation o
f

phosphorus and sediment transport is based o
n

th
e

impact o
f

rainfall in eroding sediment from

th
e

land surface and transport based o
n stream discharge during storm events. Further,

th
e

ground water residence time issue is s
o important that exploration o
f

other models perhaps

linking to HSPF needs to b
e explored.

Monitoring o
f

nutrients and sediment in th
e

watershed to detect changes over time has been

limited to about 3
0

stations in th
e

watershed. A
t

a subset o
f

these stations, storm samples

a
re

collected, indicating

th
e

limited monitoring o
f

sediment and phosphorus during critical transport

periods. In 2004, the CBP is implementing a
n enhanced non- tidal water quality network in the

Bay watershed. Initially, about 100 sites will b
e monitored in th
e

watershed with approximately

half o
f

these sites will include storm samples. The ability to detect water quality changes in th
e

watershed will improve a
s

th
e

spatially and temporally more intensive network is implemented.

Further interpretation o
f

the monitoring data will b
e accomplished b
y using models and other

data sets to understand

th
e

factors affecting water- quality changes over time.

Based o
n residence times associated with nutrient and sediment in th
e

watershed, several

conclusions

c
a
n

b
e made concerning water- quality improvements and implications

f
o
r

management actions. Meeting the proposed water- quality criteria b
y 2010 will b
e very difficult

given th
e

la
g

times noted above that affect nutrients and sediment in th
e

watershed. Some o
f

th
e

management implications

a
re that

th
e

most rapid improvements in water quality would b
e from

reduction o
f

point sources o
f

nitrogen and phosphorus. Once point-source reductions

a
re

implemented, there would b
e almost instantaneous improvement o
f

water quality in th
e

receiving

water body. However, point sources represent only about 2
0 % o
f

the nitrogen and phosphorus

delivered to th
e

Bay. Improvement in water quality from non- point source reductions will take

longer and in th
e

long run, a
s

th
e

largest load contributor, b
e most important to th
e

Bay's

restoration. Improvements in water quality o
f

streams

f
o
r

th
e

portion o
f

nitrogen that runs

o
f
f

directly into streams o
r

shallow soils could take hours to months once management practices

a
re

fully implemented. However, the remaining nitrogen in the ground water system could take

about a decade ( o
n average) to show improvements to management actions. Water- quality

improvements related to nutrients associated with sediment could take longer, given

th
e amount

o
f

storage in th
e

watershed and

it
s movement with storm events. Resource managers may want to
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consider implementing sediment reduction practices near

th
e Bay and tidal tributaries to help

compensate

f
o

r

these long residence times

f
o

r

sediment.

Session 3 Summary

Climatevariability, load reductions, and improvement in tidal water quality

and SAV

Session Chair: Kevin Sellner, Chesapeake Research Consortium

Speakers and Panel:

Walter Boynton, University o
f

Maryland Center f
o

r

Environmental Science, Chesapeake

Biological Lab;

Bill Dennison, University o
f

Maryland Center

fo
r

Environmental Science;

Bruce Michael, Maryland Department o
f

Natural Resources;

Charles Gallegos, Smithsonian Environmental Research Center

Summary o
f

Results

Tidal Water Responses

Material presented a
t

th
e

workshop suggests that tidal responses in dissolved oxygen (DO),

chlorophyll, water clarity and submerged aquatic vegetation (SAV) will b
e very rapid, and in

some cases

th
e

responses will b
e within season o
r

seasons, not years. These results were derived

from examining tidal responses to high and low flow years over

th
e

last 4
0

years. In general,

tidal chlorophyll levels, DO in the deeper parts o
f

several tributaries and

th
e

mainstem Bay, and

SAV respond fairly quickly to reduced nutrient and sediment loads to th
e

Bay. The loads

a
re a

function o
f

changes in stream flow and concentrations. Two examples o
f

relatively rapid

improvements include dissolved oxygen and SAV responses in th
e Bay during

th
e

drought years

o
f

1999- 2002 which provided a natural condition o
f

lower nutrient and sediment loads to th
e Bay

due to lower river flow.

Several factors were identified

f
o
r

th
e rapid seasonal responsiveness o
f

dissolved oxygen in th
e

Bay and several o
f

it
s tidal tributaries. First, nutrient loads

a
re highly correlated with river

discharge,

n
o
t

surprising

b
u
t

important to understanding subsequent water quality and living

resource responses in tidal waters. Second, there is little evidence suggesting there a
re long- term

nutrient stores in th
e

tidal sediments s
o

therefore, nutrients entering during

th
e

winter and spring

largely support within year water-quality changes. Third, nutrient flux, critical to high summer

productivities in th
e

tidal waters, is strongly correlated to chlorophyll from

th
e

previous month,

further emphasizing

th
e

importance o
f

system responses within a season. Fourth,

f
o
r

th
e Bay

and four MD tidal tributaries, chlorophyll biomass is strongly tied to river discharge, residence

time in th
e

river/ estuary, and nutrient load and hence, system biomass is closely coupled to

nutrients entering

th
e

system. Lastly, summerhypoxic volume and therefore DO levels

a
re

strongly tied to river discharge (Patuxent and mainstem Bay),

n
o
t

surprising considering

th
e

strong relationship between nutrient load and biomass, which is th
e

‘ fuel’

f
o
r

oxygen

consumption a
t

depth in th
e

tidal waters.

In a similarmanner, SAV responses seem to occur within growing seasons. There were

increases in SAV acres during

th
e

drought conditions o
f

1999- 2003 when water clarity improved
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due to lower amount o
f

nutrients and sediment entering

th
e Bay. In contrast,

th
e acres o
f SAV in

th
e Bay declined b
y

about 30% in 2003 largely due to elevated freshwater flows and

th
e

accompanying increase in loads o
f

suspended sediments and nutrients. Further, P and

particularly N reductions in th
e

tidal waters o
f

th
e

upper Patuxent River have been followed b
y a

rapid increase in tidal- fresh mixed SAV, indicating that load reductions should manifest

themselves with fairly rapid increases in these valued plants and

th
e

associated habitat and

sediment/ nutrient clearing capacity. In addition to improved water clarity,

th
e SAV response

will also b
e influenced b
y

th
e

amount o
f

propagules in a
n area. The multiple factors affecting

water clarity and th
e

1
5

different species o
f

SAV in th
e

Bay will impact th
e

overall la
g

time

between nutrient and sediment loads reductions and

th
e

growth in SAV. While some responses

a
re detected within one season, increases in different species can take u
p

to several years. The

actual mechanisms f
o

r

th
e

relationship between a
ll

th
e

factors and increase in SAV remain to b
e

determined through rigorous examinations o
f

nutrients, sediment, water clarity, and SAV species

changes in specific geographic areas.

Local and/ o
r

Extreme Events

The tributary strategies provide plans

f
o
r

long- term reductions in nutrient and sediment

concentrations in th
e Bay and

it
s major rivers and if implemented, conceivable reductions in both

should occur with a corresponding rapid system response. However, BMPs will reduce nutrients

and sediments concentrations slowly over time, and with

th
e

rapid changes o
f

weather and river

discharge, immediate, detectable responses in th
e

rivers and tidal waters may b
e masked b
y

changes due to natural variability.

There

a
re numerous examples o
f

basin events resulting in dramatic, detectable occurrences that if

n
o
t

explained to th
e

public, could seriously jeopardize their continued commitment to slow-

acting BMPs essential to th
e

basin's restoration. Major storms can deliver large loads o
f

nutrient

and sediment to th
e Bay and

it
s tidal tributaries from the watershed leading to immediate water

quality and SAV responses that persist into

th
e

following year. One example is th
e

effect o
f

Tropical Storm Agnes (June, 1972) that contributed to a large loss o
f

SAV. The high flow year

o
f

2003, preceded b
y 4 years o
f

drought, provides a more recent example. Small, down- bay

tributaries can react to pulses o
f

nutrient delivered from unexpected spring storms in th
e

Susquehanna basin where nitrate-enriched waters are transported southerly along the west coast

o
f

th
e

Bay leading to intrusions and phytoplankton blooms in western shore systems (Gallegos e
t

a
ll
,

1992). Tributary strategy plans could not address these loads nor should

th
e

jurisdictions b
e

held responsible

f
o

r

these events a
s

they occur independent

o
f
,

and external

t
o

,

local practices

implemented in th
e

system. Hence, there need to b
e procedures to accommodate unexpected

natural events that would appear to lead to water quality criteria exceedance regardless o
f

managed BMPs in th
e

watershed o
r

segment.

The CBP has developed a strategy that permits some degree o
f

criteria exceedance that could b
e

due to a
n event beyond

th
e

control o
f

BMPs. The approach is based o
n a cumulative frequency

distribution (CFD) o
f

water quality criterion exceedances. The approach includes a comparison

o
f

a CFD in a healthy area to that in a suspect area and is designed to allow

f
o
r

short term, wide–

spread impacts that could b
e cause b
y factors such a
s large meteorological events. Criteria

exceedances caused b
y

such a
n event would b
e considered “allowable” because they

a
re

n
o
t

th
e

result o
f

any human action and often would n
o
t

have long- term impacts o
n

ecological integrity
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because o
f

their short duration. For example, if a major storm impacts a region resulting in

elevated chlorophyll levels over a substantial portion o
f

th
e

region after

th
e

storm's passage, this

would b
e a short- term, readily observable post-storm phenomenon. However, a
s

it occurs

fo
r

such a short time in th
e

system, relative to th
e

year's chlorophyll levels,

th
e

increase would b
e

only a minor contributor to th
e

annual chlorophyll levels and hence, not

f
a

r

removed from

' normal' conditions. The event might therefore b
e considered to b
e within acceptable variability

anticipated

f
o

r

a natural system. Because

th
e

natural variability is implicitly captured b
y

a CFD

in a healthy system, comparison o
f

CFDs from other areas provides one approach

fo
r

allowable

deviations that d
o

not have lasting ecological impacts.

Summary and Implications

The results presented during

th
e

workshop and this session suggests that once nutrient and

sediment loads to th
e Bay

a
re reduced there should b
e a fairly rapid response o
f

tidal water

quality and SAV. However,

th
e

time to achieve

th
e

load reductions depends o
n

la
g

times in

BMP implementation, BMP effectiveness and maturation, watershed properties, and the

influence o
f

annual variability in rainfall and river flow conditions. Therefore,

th
e

load

reductions to th
e

Bay, especially those related to non- point sources, will take years to b
e

fully

achieved. This implies that meeting

th
e water- quality criteria in th
e Bay b
y 2010 will b
e

extremelydifficult.

Implications

f
o
r

th
e

scientific community

The scientific community needs to improve information related to factors affecting water-quality

and living resources in th
e Bay and

it
s watershed to better inform resource managers about

th
e

effectiveness o
f

different BMP strategies and implementation. Modeling within th
e

CBP should

continue to b
e used to predict potential load reductions under different scenarios but there is a

need to r
e
-

examine

it
s communication o
f

“progress” runs. The current watershed model focuses

o
n assessing load reductions based o
n planned BMP implementation, and assumes maximum

efficiencies. More realistic evaluations o
f

BMP effectiveness, specifically

th
e

1
)

actual sites

where BMPs are o
n

the ground, 2
)

th
e

length o
f

time required to reach maximum nutrient and

sediment load reduction, and 3
)

better simulation o
f

watershed properties could provide more

realistic predictions o
f

load reductions and “progress”. Monitoring needs to b
e enhanced in th
e

watershed and tidal waters to provide data o
n water-quality changes a
s management practices

a
re

implemented. Modeling, monitoring, and research need to b
e

further integrated to explain

th
e

impact o
f

natural variability, human population growth, and BMP effectiveness o
n water quality

and living resource changes in the Bay and

it
s watershed. With a
n improved scientific

understanding

th
e CBP can continue to adapt management actions to achieve

th
e

restoration

goals o
f

th
e

Chesapeake 2000 agreement.

Implications

f
o
r

Tributary Teams and Regional Expectations

The information from this workshop can b
e used to help tributary strategy teams to better

prioritize

th
e

types o
f

BMPs that will provide

th
e

most rapid improvement in water quality o
f

local rivers and ultimately

th
e

Chesapeake Bay. This process can b
e enhanced with improved

scientific information (modeling, monitoring, and research) to further delineate areas o
f

th
e

watershed where BMPs will result in th
e

most rapid improvement in water quality. There is also

a need to communicate to citizens and tributary strategy teams th
e

implications o
f

th
e

“ la
g

times”
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associated

th
e Chesapeake Bay watershed and

th
e

potential

f
o

r

major events to overwhelm any

water quality improvement that is slowly occurring due to BMP practice implementation and

effectiveness. The communication o
f

these concepts should help provide the patience and

perseverance needed to improve

th
e

ecosystem o
f

th
e

Chesapeake Bay.
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